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The formula for the entropy production in open quantum systems is 
examined for the Davies model of heat conduction. 
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1. I N T R O D U C T I O N  

The theory of open quantum systems provides a rigorous description of 
irreversible processes and therefore provides a natural base for phenomeno- 
logical nonequilibrium thermodynamics. In particular, the well-known 
balance equation for the entropy (1) 

dSldt=fo~ao+f~ J S a n  (1.1) 

where S is the entropy of  the open system, cr 1> 0 is the local entropy pro- 
duction, and j s  is the entropy flow through the surface of the system, should 
be explained by this theory. We consider the open quantum system S~, the 
dynamics of which is a one-parameter family (At; t 1> 0} of linear trace- 
preserving maps and with completely positive dual maps {At*, t >I 0} (see 
Refs. 2 and 3 for details). 

The entropy of 5:  in the state p is given by 

S(p) = - t r ( p l n p )  (1.2) 
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One can introduce the relative entropy for the pair of states p, cr 

S(p[e) = - t r (p  In p - p In or) (1.3) 

whenever this formula is well-defined. 
If  the system 5 p possesses a stationary state po = Atp0, t 1> 0, then the 

entropy production can be defined by 

~(t) =: d S(p(t)]po) (1.4) 

whenever the derivative exists. 
Following from the results of Lindblad, (4) ~(t) >i 0. Taking into account 

(1.2) and (1.3), we obtain the total entropy flow 

ys = _tr[dP(t) ] [ dt lnpo (1.5) 

Formulas (1.4) and (1.5) were suggested in Refs. 5 and 6 for the case of a 
dynamical semigroup and were independently studied in Refs. 7-9. 

However, the above definitions (1.4) and (1.5) reproduce the formulas of 
nonequilibrium phenomenological thermodynamics only if po is an equilib- 
rium state. 

In the case of an open system weakly interacting with N independent 
reservoirs one can define the entropy production in a slightly different way. 
The dynamics of such a system is governed by the following master equation" 

N 

dp 1[ H, Pl + ~ L~p (1.6) 
d7=7 k = l  

where L~ is a generator arising from the coupling of ~ to the kth reservoir. 
We assume that for every k = 1, 2,..., N there exists a state flo(k) > 0 

such that 

Lkpo(k) = 0 (1.7) 

To avoid mathematical difficulties with unbounded operators we assume the 
Hilbert space of J to be finite-dimensional (dim ~ < oo). 

Then one can define the entropy production a(p) and the entropy flow 
js(p) by 

N 

a(O ) = - t r  ~ {Lkp(ln p -- In po(k))} (1.8) 

N 

JS(p) = - ~ tr{(Lkp) In po(k)} (1.9) 
h : = l  
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Formulas (1.8) and (1.9) were studied in Refs. 8 and 9 for the special case of 
thermal reservoirs. 

For further applications we prefer the more general forms (1.8) and (1.9) 
introduced independently but later in Ref. 10. If for certain models the station- 
ary states po(k) are not unique, then the entropy production (1.8) may not be 
uniquely defined. 

However, we shall show in Section 3 that for the Davies model of heat 
conduction no ambiguity occurs in the form of the entropy production. The 
importance of the Davies model lies in the fact that it is simple enough but 
possesses a nontrivial thermodynamic local structure. 

2. THE D A V I E S  M O D E L  OF HEAT C O N D U C T I O N  

In Ref. 11 Davies considers a finite, one-dimensional chain of quantum 
mechanical atoms with nearest neighbor interaction of a special type coupled 
at the ends to two infinite, quasifree reservoirs at different temperatures. A 
more general model of such a system consists of N subsystems {5:k}~=1 fixed 
in space. The M subsystems {5:~, 5:2,..., 5:M} form the "surface" of the total 
open system and each of them weakly interacts with the thermal reservoir 
Rk, k = 1, 2,..., M, at the inverse temperature fie- Moreover, every sub- 
system 5:k interacts with its neighbors via intermediate reservoirs {W(kln)}. 
To avoid mathematical difficulties we assume the Hilbert spaces {~} of the 
subsystems {5:~} to be finite-dimensional. 

The rather artificial interaction between the subsystems via the inter- 
mediate reservoirs has the effect of destroying phase relationships between 
the subsystems but conserves the total energy of the open system. This is a 
simple caricature of real nonlinear energy transfer processes (for example, 
collisions of phonons in solids). Omitting the derivations, which are given in 
Refs. 11 and 12, we write down the equation of motion for such a system in 
the Markovian approximation: 

M 

dp 1 [H, p] + ~ Lep + x~ Xm.p (2.1) 
~7=7 /~=1 {m-n}  

Here, the generator Le acts on the Banach space LI (~ ) ,  and Kin, acts on 
Ll(JC'm | ~ ) .  The sum ~ _ , )  is taken over all pairs of neighbors { ~ ,  9~ 

The stationary state of the "surface" generator Le has the form 

po(k) = Z-~(k)e -a'~n'~ | ~', k = 1, 2 ..... M (2.2) 

where He is a free Hamiltonian of the subsystem 5:k and y is an arbitrary 
state on | Yt~ 

Under some natural assumptions concerning the coupling of 5:k to the 
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thermal reservoir Rk,(9) the ambiguity of the arbitrary stationary state for L~ 
is related to ~, only. The generator Kin, has the form 

Kmnp = -�89 [Am,, p]] (2.3) 

where Am, = A+m, acts on the Hilbert space ~r | ~ and commutes with 
Hm+H.. 

Directly from (2.3) we have the following result: 

Coro l l a ry  1. The stationary states of the generator (2.3) are the positive 
matrix with unit trace contained in the subalgebra din,, 

Moreover, Kin. is self-dual, Kin. = K~., and its kernel on the space ~(| 1 ~ )  
is equal to din.. 

. THE ENTROPY BALANCE FOR THE DAVIES MODEL 

Lemma 1. The component Crm,(p ) [JSmn(p) ] of the entropy production 
[flow] related to the generator Km, is equal to 

~m~(P) = -tr{(K,,~p) In P} (3.1) 

[ js  (p) = 01 (3.2) 

for the arbitrary stationary state po(mn). 

Proof. Let us consider the term tr[Km,p In po(mn)] [see (1.8), (1.9)]. 
Because po(mn)e din,, and din, is a subalgebra, then In po(mn)Edm,; 
therefore, taking into account Corollary 1, 

tr{(Km, O) In po(mn)} = tr{p(Km, In po(mn))} = 0 (3.3) 

Using (1.8), (1.9), (3.1), and (3.2), we obtain the following uniquely defined 
formulas for the entropy production and the entropy flow: 

M 

~(p) = ~ - tr[(L~p)(ln p +/3~H~)] + ~ - tr[(Km,O)In p] (3.4) 
k = l  { m - n }  

M 

js(p) = ~ fl~ tr[(L~p)H~] (3.5) 
k = l  

Formula (3.4) corresponds to the volume term in (1.1) and (3.5) to the 
surface term in (1.1). 

4. A SIMPLE EXAMPLE 

The entropy production in an arbitrary state (3.4) contains an enormous 
number of contributions related to the microscopic quantum processes in 
the system. 
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In contrast, the phenomenological formulas ~1) are simple because they 
represent only the processes with a long time scale in comparison with the 
microscopic relaxation times. 

In order to obtain the more familiar expressions for the entropy pro- 
duction we introduce simplifying assumptions concerning the model and 
especially the state. We consider a finite, one-dimensional chain of N 
identical atoms with nearest neighbor interaction. (11) The dimensionality of 
the lattice is fixed only in order to simplify the notation. The state of this 
system is supposed to have the following form: 

# = Z~ -1 exp - f l(k)Hk - ~ )~(k)X~(k) (4.1) 
k = l  0~=1 

where X.(k) = Xta(k) acts on 3(f~ and moreover 

[X.(k), g~] = 0, [X.(k), X~(k)] = 0 (4.2) 

Although this form of the density matrix is not preserved during the time 
evolution, it is instructive to calculate the entropy production with such an 
Anzatz. 

We define the local thermodynamic fluxes J.(k), k = O, l, 2...,  N, 
related to X,(k), a = O, 1 .... , Q, Xo(k) - H~: 

J.(O) = tr{(Llp)X~(1)},  J~(N) = -tr{(LNp)X.(N)} (4.3) 

where L1 and Lu are "surface generators";  we have 

J,(k) = - �89 tr((Kk(~ + 1)#) VX~(k)} (4.4) 

k = 1, 2,..., N - 1, where 

VXr =: X,(k  + 1) - X,~(k) (4.5) 

For  every Hilbert space ~ | ~ + 1 we define the interchange operator rr, 
acting on ~(5(~ | avg'~ + 1) 

rr,(Q(n) • R(n + 1)) =: R(n) @ Q(n + l) (4.6) 

where, for example, R(n) is a fixed operator R acting on the Hilbert space J~,. 
The natural symmetry of a one-dimensional lattice implies [see (2.3)] 

IrkAk(~ + 1) = A~(~ + 1) (4.7) 

Corollary 2. Suppose that (4.1)-(4.7) hold. Then the entropy pro- 
duction (3.4) is given by 

N O 

wo(k) (4.8) 
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where 

V~,(k) =: ),,(k + 1) - ~,(k) (4.9) 

A0(0) =: fil is the inverse temperature of the left reservoir and A0(N + 1) =: f12 
is the inverse temperature of the right reservoir; for ~ >/ 1, A,(0)= 
~ ( N +  1 ) = 0 .  

Proof. Formula (4.8) can be obtained by simple calculations using (3.4) 
and (4.2) if one notices that following (4.7) and the condition 

[A~(~+I),//k + Hk+l] = 0 

we have 

[A~(k + 1), B~] = [A, �89 -- ~rkBk)] (4.10) 

for B~ = B~ + acting on ~ | ~ + ~  and commuting with H~ + Hk+~. 

C o r o l l a r y  3. If the gradients VA,(k) are gmall, then in linear approxi- 
mation we obtain the Onsager relations in a local form 

J~(k) ,~ - ~ .  L,a(k)  V?,a(k) (4.11) 
"T 

where 

L,B(k ) = LB~(k ) (4.12) 

[L,B(k)] >1 0 (4.13) 

Commen t .  This is a special case of the general derivation of Onsager 
relations for open systems given in Refs. 5 and 6, where the explicit form of 
L,~(k) can be found. The above example is even much simpler because of the 
commutativity of {X~(k)}. The conditions (4.12) and (4.13) are closely related 
to the local detail balance property of the dynamics of open system (see Refs. 
6, 10, and 13 for details). 
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